
Prolog

Extreme Tech Seminar

Seven Languages in Seven Weeks
Correl Roush
June 24, 2015

INTRODUCTION

Created 1972
Author Alain Colmerauer and Phillipe

Roussel
A declarative logic programming language.

Seven Languages in Seven Weeks

GETTING PROLOG

GNU Prolog
http://www.gprolog.org/

SWI Prolog
http://www.swi-prolog.org/

Seven Languages in Seven Weeks

http://www.gprolog.org/
http://www.swi-prolog.org/

DAY 1: AN EXCELLENT DRIVER

Atoms & Variables
Facts & Rules
Unification

Seven Languages in Seven Weeks

ATOMS & VARIABLES

Atoms
Begin with a lowercase letter.

Variables
Begin with an uppercase letter.

Seven Languages in Seven Weeks

BASIC FACTS & QUERIES

Facts
likes(wallace, cheese).
likes(grommit, cheese).
likes(wendolene, sheep).

Rules
friend(X, Y) :- \+(X = Y),

likes(X, Z),
likes(Y, Z).

Example (Queries)
likes(wallace, sheep).
%% false

likes(grommit, cheese).
%% true

friend(grommit, wallace).
%% true

friend(wallace, grommit).
%% true

friend(wendolene, grommit).
%% false

Seven Languages in Seven Weeks

FILLING IN THE BLANKS

Facts
food_type(velveeta, cheese).
food_type(ritz, cracker).
food_type(spam, meat).
food_type(sausage, meat).
food_type(jolt, soda).
food_type(twinkie, dessert).

flavor(sweet, desert).
flavor(savory, meat).
flavor(savory, cheese).
flavor(sweet, soda).

Rules
food_flavor(X, Y) :- food_type(X, Z),

flavor(Y, Z).

Example (Queries)
food_type(What, meat).
%% What = spam ;
%% What = sausage.

food_flavor(sausage, sweet).
%% false.

flavor(sweet, What).
%% What = dessert ;
%% What = soda.

food_flavor(What, savory).
%% What = velveeta ;
%% What = spam ;
%% What = sausage.

Seven Languages in Seven Weeks

MAP COLORING: PROBLEM

We want to color a map of the southeastern United
States.
We do not want two states of the same color to touch.
We will use three colors: red, blue, and green.

Seven Languages in Seven Weeks

MAP COLORING: SOLUTION

Facts
different(red, green). different(red, blue).
different(green, red). different(green, blue).
different(blue, red). different(blue, green).

coloring(Alabama, Mississippi,
Georgia, Tennessee, Florida) :-

different(Mississippi, Tennessee),
different(Mississippi, Alabama),
different(Alabama, Tennessee),
different(Alabama, Mississippi),
different(Alabama, Georgia),
different(Alabama, Florida),
different(Georgia, Florida),
different(Georgia, Tennessee).

Example (Query)
coloring(Alabama, Mississippi,

Georgia, Tennessee, Florida).
%% Alabama = blue,
%% Florida = green,
%% Georgia = red ,
%% Mississippi = red,
%% Tennessee = green ;

Seven Languages in Seven Weeks

UNIFICATION, PART 1

Unification
Unification across two structures tries to
make both structures identical.

Facts
cat(lion).
cat(tiger).

Rules
dorothy(X, Y, Z) :- X = lion,

Y = tiger,
Z = bear.

twin_cats(X, Y) :- cat(X), cat(Y).

Example (Unification)
dorothy(lion, tiger, bear).
%% true.

dorothy(One, Two, Three).
%% One = lion,
%% Two = tiger,
%% Three = bear.

twin_cats(One, Two).
%% One = lion,
%% Two = lion ;
%% One = lion,
%% Two = tiger ;
%% One = tiger,
%% Two = lion ;
%% One = tiger,
%% Two = tiger.

Seven Languages in Seven Weeks

INTERVIEW

An interview with Brian Tarbox, Dolphin Researcher

Seven Languages in Seven Weeks

EXERCISES

EXERCISES

Seven Languages in Seven Weeks

DAY 2: FIFTEEN MINUTES TO WAPNER

Recursion
Lists and Tuples
Unification
Lists and Math
Using rules in Both Directions

Seven Languages in Seven Weeks

RECURSION

The following rules define the paternal family tree of the Waltons. They express a
father relationship and from that infers the ancestor relationship. Since an ancestor
can mean a father, grandfather, or great grandfather, we will need to nest the rules
or iterate.
father(zeb, john_boy_sr).
father(john_boy_sr, john_boy_jr).

ancestor(X, Y) :-
father(X, Y).

ancestor(X, Y) :-
father(X, Z), ancestor(Z, Y).

In the above example, ancestor(Z, Y) is a recursive subgoal.

Seven Languages in Seven Weeks

LISTS AND TUPLES

Lists are containers of variable length.
Tuples are containers with a fixed length.

Seven Languages in Seven Weeks

UNIFICATION, PART 2: TUPLES

Tuples unify if they have the same number of elements, and each element unifies.
(1, 2, 3) = (1, 2, 3). %% true
(1, 2, 3) = (1, 2, 3, 4). %% false
(1, 2, 3) = (3, 2, 1). %% false

Seven Languages in Seven Weeks

UNIFICATION, PART 2: LISTS

Lists behave similarly, but can be deconstructed with the pattern [Head|Tail].
[1, 2, 3] = [1, 2, 3]. %% true
[2, 2, 3] = [X, X, Z]. %% X = 2, Z = 3

[a, b, c] = [Head|Tail]. %% Head = a, Tail = [b, c]
[] = [Head|Tail]. %% false
[a] = [Head|Tail]. %% Head = a, Tail = []

[a, b, c] = [a|[Head|Tail]]. %% Head = b, Tail = [c]

[a, b, c, d, e] = [_, _|[Head|_]]. %% Head = c

Seven Languages in Seven Weeks

LISTS AND MATH

Count
count(0, []).
count(Count, [Head|Tail]) :- count(TailCount, Tail), Count is TailCount + 1.

Sum
sum(0, []).
sum(Total, [Head|Tail]) :- sum(Sum, Tail), Total is Head + Sum.

Average
average(Average, List) :- sum(Sum, List), count(Count, List), Average is Sum/Count.

Seven Languages in Seven Weeks

USING RULES IN BOTH DIRECTIONS

The rule append(List1, List2, List3) is true if List3 is List1 + List2.

… as a lie detector
append([oil], [water],

[oil, water]). %% true
append([oil], [water],

[oil, slick]). %% false

… as a list builder
append([tiny], [bubbles],

What).
%% What = [tiny, bubbles]

… for list subtraction
append([dessert_topping], Who,

[dessert_topping, floor_wax]).
%% Who = [floor_wax]

… for computing possible splits
append(One, Two,

[apples, oranges, bananas]).

%% One = [], Two = [apples, oranges, bananas]
%% One = [apples], Two = [oranges, bananas]
%% One = [apples, oranges], Two = [bananas]
%% One = [apples, oranges, bananas], Two = []

Seven Languages in Seven Weeks

IMPLEMENTING APPEND/3

Steps:
01 Write a rule called concatenate(List1, List2, List3) that can

concatenate an empty list to List1.
02 Add a rule that concatenates one item from List1 onto List2.
03 Add a rule that concatenates two and three items from List1 onto List2.
04 See what we can generalize.

Seven Languages in Seven Weeks

CONCATENATE/3: STEP 1

concatentate/3 is true if the first parameter is an empty list and the next two
parameters are the same.
concatenate([], List, List).

Example (Test)
concatenate([], [harry], What).
%% What = [harry]

Seven Languages in Seven Weeks

CONCATENATE/3: STEP 2

Add a rule that concatenates the first element of List1 tot he front of List2:
concatenate([Head|[]], List, [Head|List]).

Example (Test)
concatenate([malfoy], [potter], What).
%% What = [malfoy, potter]

Seven Languages in Seven Weeks

CONCATENATE/3: STEP 3

Define another couple of rules to concatenate lists of lengths 2 and 3:
concatenate([Head1|[Head2|[]]], List, [Head1, Head2|List]).
concatenate([Head1|[Head2|[Head3|[]]]], List, [Head1, Head2, Head3|List])

Example (Test)
concatenate([malfoy, granger], [potter], What).
%% What = [malfoy, granger, potter]

Seven Languages in Seven Weeks

CONCATENATE/3: STEP 4

Generalize for lists of arbitrary length using nested rules:
concatenate([], List, List).
concatenate([Head|Tail1], List, [Head|Tail2]) :-

concatenate(Tail1, List, Tail2).

Seven Languages in Seven Weeks

EXERCISES

EXERCISES

Seven Languages in Seven Weeks

DAY 3: BLOWING UP VEGAS

Sudoku
Eight Queens

Seven Languages in Seven Weeks

SOLVING SUDOKU: THE PROBLEM

For a solved puzzle, the numbers in the puzzle and solution should be the same.
A Sudoku board is a grid of sixteen cells, with values from 1-4.
The board has four rows, four columns, and four squares.
A puzzle is valid if the elements in each row, column, and square has no
repeated elements.

Example (Example)
sudoku([_, _, 2, 3,

_, _, _, _,
_, _, _, _,
3, 4, _, _],

Solution).

Seven Languages in Seven Weeks

SOLVING SUDOKU: THE SOLUTION

valid([]).
valid([Head|Tail]) :-

fd_all_different(Head),
valid(Tail).

sudoku(Puzzle, Solution) :-
Solution = Puzzle,
Puzzle = [S11, S12, S13, S14,

S21, S22, S23, S24,
S31, S32, S33, S34,
S41, S42, S43, S44],

fd_domain(Solution, 1, 4),

Row1 = [S11, S12, S13, S14],
Row2 = [S21, S22, S23, S24],
Row3 = [S31, S32, S33, S34],
Row4 = [S41, S42, S43, S44],

Col1 = [S11, S21, S31, S41],
Col2 = [S12, S22, S32, S42],
Col3 = [S13, S23, S33, S43],
Col4 = [S14, S24, S34, S44],

Square1 = [S11, S12, S21, S22],
Square2 = [S13, S14, S23, S24],
Square3 = [S31, S32, S41, S42],
Square4 = [S33, S34, S43, S44],

valid([Row1, Row2, Row3, Row4,
Col1, Col2, Col3, Col4,
Square1, Square2, Square3, Square4]).

Seven Languages in Seven Weeks

EIGHT QUEENS: THE PROBLEM

A board has eight queens.
Each queen has a row from 1-8 and a column from 1-8.
No two queens can share the same row.
No two queens can share the same column.
No two queens can share the same diagonal (southwest to northeast).
No two queens can share the same diagonal (northwest to southeast).

Seven Languages in Seven Weeks

EIGHT QUEENS: THE SOLUTION

valid_queen((Row, Col)) :-
member(Col, [1,2,3,4,5,6,7,8]).

valid_board([]).
valid_board([Head|Tail]) :-

valid_queen(Head), valid_board(Tail).

cols([], []).
cols([(_, Col)|QueensTail], [Col|ColsTail]) :-

cols(QueensTail, ColsTail).

diags1([], []).
diags1([(Row, Col)|QueensTail],

[Diagonal|DiagonalsTail]) :-
Diagonal is Col - Row,
diags1(QueensTail, DiagonalsTail).

diags2([], []).
diags2([(Row, Col)|QueensTail],

[Diagonal|DiagonalsTail]) :-
Diagonal is Col + Row,
diags2(QueensTail, DiagonalsTail).

eight_queens(Board) :-
Board = [(1, _), (2, _), (3, _), (4, _),

(5, _), (6, _), (7, _), (8, _)],
valid_board(Board),

cols(Board, Cols),
diags1(Board, Diags1),
diags2(Board, Diags2),
fd_all_different(Cols),
fd_all_different(Diags1),
fd_all_different(Diags2).

Seven Languages in Seven Weeks

EXERCISES

EXERCISES

Seven Languages in Seven Weeks

WRAPPING UP PROLOG: STRENGTHS

Natural-Language Processing
Games
Semantic Web
Artificial Intelligence
Scheduling

Seven Languages in Seven Weeks

WRAPPING UP PROLOG: WEAKNESSES

Utility
Very Large Data Sets
Mixing the Imperative and Declarative Models

Seven Languages in Seven Weeks

FINAL THOUGHTS

Prolog was a particularly poignant example of my evolving understanding.
If you find a problem that’s especially well suited for Prolog, take
advantage. In such a setting, you can best use this rules-based language in
combination with other general-purpose languages, just as you would use
SQL within Ruby or Java.

Seven Languages in Seven Weeks

	Introduction
	Day 1
	Day 2
	Day 3
	Wrapping Up

