
Haskell

Extreme Tech Seminar

Seven Languages in Seven Weeks
Correl Roush

August 12, 2015

HASKELL

Seven Languages in Seven Weeks

INTRODUCTION

Created 1990
Author A committee of researchers and

application programmers, including
John Hughes, Simon Peyton Jones,
and Philip Wadler.

Seven Languages in Seven Weeks

GETTING HASKELL

https://www.haskell.org/
http://learnyouahaskell.com/

Seven Languages in Seven Weeks

https://www.haskell.org/
http://learnyouahaskell.com/

DAY 1: LOGICAL

Haskell is a functional programming language. Its first distinguishing
characteristic is that it is a pure functional language. A function with the
same arguments will always produce the same result.

Expressions
Types
Functions
Tuples and Lists
Function Composition
List Comprehensions

Seven Languages in Seven Weeks

EXPRESSIONS AND PRIMITIVE TYPES

Numbers
4 -- 4
4 + 1 -- 5
4 + 1.0 -- 5.0
4 + 2.0 * 5 -- 14.0

Strings
"hello" ++ " world" -- "hello world"
'a' -- 'a'
['a', 'b'] -- "ab"

Booleans
(4 + 5) == 9 -- True
(5 + 5) /= 10 -- False
if (5 == 5) then "true" else "false" -- "true"

Seven Languages in Seven Weeks

TYPE ERRORS

if
if 1 then "true" else "false"

<interactive>:2:4:
No instance for (Num Bool) arising from the literal ‘1’
In the expression: 1
In the expression: if 1 then "true" else "false"
In an equation for ‘it’: it = if 1 then "true" else "false"

+
"one" + 1

<interactive>:4:7:
No instance for (Num [Char]) arising from a use of ‘+’
In the expression: "one" + 1
In an equation for ‘it’: it = "one" + 1

Seven Languages in Seven Weeks

FUNCTIONS

Simple
let double x = x + x
double 2

4

:t double

double :: Num a => a -> a

Recursive
factorial :: Integer -> Integer
factorial x

| x > 1 = x * factorial (x - 1)
| otherwise = 1

Seven Languages in Seven Weeks

TUPLES

Code
module Main where

fibTuple :: (Integer, Integer, Integer) -> (Integer, Integer, Integer)
fibTuple (x, y, 0) = (x, y, 0)
fibTuple (x, y, index) = fibTuple (y, x + y, index - 1)

fibResult :: (Integer, Integer, Integer) -> Integer
fibResult (x, y, z) = x

fib :: Integer -> Integer
fib x = fibResult (fibTuple (0, 1, x))

Results
:l fib_tuple
fib 100

354224848179261915075

Seven Languages in Seven Weeks

TUPLES AND COMPOSITION

module Main where

fibNextPair :: (Integer, Integer) -> (Integer, Integer)
fibNextPair (x, y) = (y, x + y)

fibNthPair :: Integer -> (Integer, Integer)
fibNthPair 1 = (1, 1)
fibNthPair n = fibNextPair (fibNthPair (n - 1))

fib :: Integer -> Integer
fib = fst . fibNthPair

Seven Languages in Seven Weeks

TRAVERSING LISTS

Pattern Matching
let (h:t) = [1, 2, 3 4]
-- h = 1
-- t = [2,3,4]

Recursive Traversal
size [] = 0
size (h:t) = 1 + size t

prod [] = 1
prod (h:t) = h * prod t

Zip
zip ["kirk", "spock"] ["enterprise", "reliant"]
-- [("kirk","enterprise"),("spock","reliant")]

Seven Languages in Seven Weeks

GENERATING LISTS

Recursion
allEven :: [Integer] -> [Integer]
allEven [] = []
allEven (h:t) = if even h then h:allEven t else allEven t

Ranges and Composition
[1..4] -- [1,2,3,4]
[10..4] -- []
[10, 8 .. 4] -- [10,8,6,4]

take 5 [1..] -- [1,2,3,4,5]
take 5 [0, 2..] -- [0,2,4,6,8]

List Comprehensions
[x * 2 | x <- [1, 2, 3]] -- [2,4,6]
[(4 - x, y) | (x, y) <- [(1, 2), (2, 3), (3, 1)]] -- [(3,2),(2,3),(1,1)]

let crew = ["Kirk", "Spock", "McCoy"]
[(a, b) | a <- crew, b <- crew, a < b]
-- [("Kirk","Spock"),("Kirk","McCoy"),("McCoy","Spock")]

Seven Languages in Seven Weeks

AN INTERVIEW WITH PHILIP WADLER

The original goals were not modest: we wanted the language to be a
foundation for research, suitable for teaching, and up to industrial uses.

Seven Languages in Seven Weeks

DAY 2: SPOCK'S GREATEST STRENGTH

Haskell’s great strength is also that predictability and simplicity of logic.
Many universities teach Haskell in the context of reasoning about
programs. Haskell makes creating proofs for correctness far easier than
imperative counterparts.

Higher Order Functions
Partial Application and Currying
Lazy Evaluation

Seven Languages in Seven Weeks

HIGHER-ORDER FUNCTIONS

Anonymous Functions
(\x -> x ++ " captain.") "Logical, "
-- "Logical, captain."

map and where
squareAll list = map square list

where square x = x * x

squareAll [1, 2, 3] -- [1,4,9]
map (+ 1) [1, 2, 3] -- [2,3,4]

filter, foldl, foldr
filter odd [1, 2, 3, 4, 5] -- [1,3,5]
foldl (\x carryOver -> carryOver + x) 0 [1 .. 10] -- 55
foldl (+) 0 [1 .. 3] -- 6

Seven Languages in Seven Weeks

PARTIAL APPLICATION AND CURRYING

let prod x y = x * y
:t prod

prod :: Num a => a -> a -> a

let double = prod 2
let triple = prod 3

double 3 -- 6
triple 4 -- 12

So, the mystery is solved. When Haskell computes prod 2 4, it is really computing
(prod 2) 4, like this:

First, apply prod 2. That returns the function (\y -> 2 * y).
Next, apply (\y -> 2 * y) 4, or 2 * 4, giving you 8.

Seven Languages in Seven Weeks

LAZY EVALUATION

let lazyFib x y = x:(lazyFib y (x + y))
let fib = lazyFib 1 1
let fibNth x = head (drop (x - 1) (take (x) fib))

take 5 (fib) -- [1,1,2,3,5]
take 5 (drop 20 (lazyFib 0 1)) -- [6765,10946,17711,28657,46368]

take 5 (map ((* 2) . (* 5)) fib) -- [10,10,20,30,50]

Composition
In Haskell, f . g x is shorthand for f(g x).

Seven Languages in Seven Weeks

AN INTERVIEW WITH SIMON PEYTON-JONES

Apart from purity, probably the most unusual and interesting feature of
Haskell is its type system. Static types are by far the most widely used
program verification technique available today: millions of programmers
write types (which are just partial specifications) every day, and compilers
check them every time they compile the program. Types are the UML of
functional programming: a design language that forms an intimate and
permanent part of the program.

Seven Languages in Seven Weeks

DAY 3: THE MIND MELD

Classes and Types
Monads

Seven Languages in Seven Weeks

BASIC TYPES

'c' :: Char
"abc" :: [Char]
['a', 'b', 'c'] :: [Char]
True :: Bool
False :: Bool

Seven Languages in Seven Weeks

USER-DEFINED TYPES

data Suit = Spades | Hearts
deriving Show

data Rank = Ten | Jack | Queen | King | Ace
deriving Show

type Card = (Rank, Suit)
type Hand = [Card]

value :: Rank -> Integer
value Ten = 1
value Jack = 2
value Queen = 3
value King = 4
value Ace = 5

cardValue :: Card -> Integer
cardValue (rank, suit) = value rank

Seven Languages in Seven Weeks

FUNCTIONS AND POLYMORPHISM

Generic Functions
backwards [] = []
backwards (h:t) = backwards t ++ [h]

Could be typed as
backwards :: Hand -> Hand

or
backwards :: [a] -> [a]

Polymorphic Data Types
data Triplet a = Trio a a a deriving (Show)

Could be used as:
Trio 'a' 'b' 'c' :: Triplet Char

Seven Languages in Seven Weeks

RECURSIVE TYPES

Defining a tree data type
data Tree a = Children [Tree a]

| Leaf a
deriving (Show)

Constructing and deconstructing a tree of integers
let tree = Children [Leaf 1, Children [Leaf 2, Leaf 3]] :: Tree Integer
let (Children ch) = tree
-- ch = [Leaf 1, Children [Leaf 2, Leaf 3]]
let (fst:tail) = ch
-- fst = Leaf 1

Calculating the depth of a tree
depth (Leaf _) = 1
depth (Children c) = 1 + maximum (map depth c)

Seven Languages in Seven Weeks

CLASSES

It’s not an object-oriented class, because there’s no data involved.
A class defines which operations can work on which inputs.
A class provides some function signatures. A type is an instance of a class if it
supports all those functions.

class Eq a where
(==), (/=) :: a -> a -> Bool

-- Minimal complete definition:
-- (==) or (/=)

x /= y = not (x == y)
x == y = not (x /= y)

Seven Languages in Seven Weeks

CLASS INHERITANCE

Seven Languages in Seven Weeks

MONADS

Seven Languages in Seven Weeks

THE PROBLEM: DRUNKEN PIRATE

def treasure_map(v)
v = stagger(v)
v = stagger(v)
v = crawl(v)
return(v)

end

We have several functions that we call within treasure_map that sequentially
transform our state, the distance traveled. The problem is that we have mutable
state.

Seven Languages in Seven Weeks

THE PROBLEM: DRUNKEN PIRATE

module Main where

stagger :: (Num t) => t -> t
stagger d = d + 2
crawl d = d + 1

treasureMap d =
crawl (
stagger (
stagger d))

letTreasureMap (v, d) = let d1 = stagger d
d2 = stagger d1
d3 = crawl d2

in d3

The inputs and outputs are the same, so it should be easier to compose these kinds
of functions. We would like to translate stagger(crawl(x)) into stagger(x) ·
crawl(x), where · is function composition. That’s a monad.

Seven Languages in Seven Weeks

COMPONENTS OF A MONAD

At its basic level, a monad has three basic things:
A type constructor that’s based on some type of container. The container could
be a simple variable, a list, or anything that can hold a value. We will use the
container to hold a function. The container you choose will vary based on what
you want your monad to do.
A function called return that wraps up a function and puts it in the container.
The name will make sense later, when we move into do notation. Just
remember that return wraps up a function into a monad.
A bind function called >>= that unwraps a function. We’ll use bind to chain
functions together.

Seven Languages in Seven Weeks

MONADIC LAWS

All monads will need to satisfy three rules. I’ll mention them briefly here. For some
monad m, some function f, and some value x:

You should be able to use a type constructor to create a monad that will work
with some type that can hold a value.
You should be able to unwrap and wrap values without loss of information.
(monad >> return = monad=)
Nesting bind functions should be the same as calling them sequentially. ((m >>
f) »= g = m »= (-> f x »=

Seven Languages in Seven Weeks

BUILDING A MONAD FROM SCRATCH

module Main where
data Position t = Position t deriving (Show)

stagger (Position d) = Position (d + 2)
crawl (Position d) = Position (d + 1)

rtn x = x
x >>== f = f x

treasureMap pos = pos >>==
stagger >>==
stagger >>==
crawl >>==
rtn

Seven Languages in Seven Weeks

MONADS AND DO NOTATION

module Main where
tryIo = do putStr "Enter your name: " ;

line <- getLine ;
let { backwards = reverse line } ;
return ("Hello. Your name backwards is " ++ backwards)

Seven Languages in Seven Weeks

LIST MONAD

instance Monad [] where
m >>= f = concatMap f m
return x = [x]

let cartesian (xs,ys) = do x <- xs; y <- ys; return (x,y)
cartesian ([1..2], [3..4])
-- [(1,3),(1,4),(2,3),(2,4)]

Example (Password Cracker)
module Main where

crack = do x <- ['a'..'c'] ; y <- ['a'..'c'] ; z <- ['a'..'c'] ;
let { password = [x, y, z] } ;
if attempt password

then return (password, True)
else return (password, False)

attempt pw = if pw == "cab" then True else False

Seven Languages in Seven Weeks

MAYBE MONAD

In this section, we’ll look at the Maybe monad. We’ll use this one to handle a
common programming problem: some functions might fail.
data Maybe a = Nothing | Just a

instance Monad Maybe where
return = Just
Nothing >>= f = Nothing
(Just x) >>= f = f x

Seven Languages in Seven Weeks

USING THE MAYBE MONAD

Without a monad
case (html doc) of

Nothing -> Nothing
Just x -> case body x of
Nothing -> Nothing
Just y -> paragraph 2 y

With the Maybe monad
Just someWebpage >>= html >>= body >>= paragraph >>= return

Seven Languages in Seven Weeks

WRAPPING UP HASKELL: STRENGTHS

Type System
Expressiveness
Purity of Programming Model
Lazy Semantics
Academic Support

Seven Languages in Seven Weeks

WRAPPING UP HASKELL: WEAKNESSES

Inflexibility of Programming Model
Community
Learning Curve

Seven Languages in Seven Weeks

FINAL THOUGHTS

Of the functional languages in the book, Haskell was the most difficult to
learn. The emphasis on monads and the type system made the learning
curve steep. Once I mastered some of the key concepts, things got easier,
and it became the most rewarding language I learned. Based on the type
system and the elegance of the application of monads, one day we’ll look
back at this language as one of the most important in this book.

Haskell plays another role, too. The purity of the approach and the
academic focus will both improve our understanding of programming. The
best of the next generation of functional programmers in many places will
cut their teeth on Haskell.

Seven Languages in Seven Weeks

	Introduction
	Day 1
	Day 2
	Day 3
	Wrapping Up

