
Erlang/OTP

Extreme Tech Seminar

Seven Languages in Seven Weeks
Correl Roush
July 29, 2015

INTRODUCTION

Created 1986
Author Joe Armstrong, Robert

Virding, and Mike Williams
A functional language built for
concurrency and reliability.

Seven Languages in Seven Weeks

GETTING ERLANG/OTP

http://www.erlang.org/

Seven Languages in Seven Weeks

http://www.erlang.org/

CONCURRENCY

Lightweight processes
No shared state
Transparently distributed message passing
Processes as actors

Seven Languages in Seven Weeks

RELIABILITY

”Let it crash” approach to error handling
Process monitoring and restarting
Hot code loading

The whole notion of “nondefensive” programming and “Let It Crash,”
which is the mantra of Erlang programming, is completely the opposite of
conventional practice, but it leads to really short and beautiful programs.
– Dr. Joe Armstrong

Seven Languages in Seven Weeks

DAY 1: APPEARING HUMAN

Erlang is the first of our functional
languages:

Your programs are going to be built
entirely out of functions, with no
objects anywhere.
Those functions will usually return
the same values, given the same
inputs.
Those functions will not usually have
side effects, meaning they will not
modify program state.
You will only be able to assign any
variable once.

Seven Languages in Seven Weeks

COMMENTS AND EXPRESSIONS

% This is a comment

2 + 2. % 4
2 + 2.0. % 4
"string". % "string"
[1, 2, 3]. % [1,2,3]
[72, 97, 32, 72, 97, 32, 72, 97]. % "Ha Ha Ha"

So, a String is really a List, and Agent Smith just laughed at your
mamma.

Seven Languages in Seven Weeks

VARIABLES

variable = 4.
%% ** exception error: no match of right hand side value 4

This error message is really a reference to Erlang’s pattern matching. It’s breaking
because variable is an atom. Variables must start with an uppercase letter.
Var = 1.
%% 1

Var = 2.
%% ** exception error: no match of right hand side value 2

As you can see, variables begin with a capital letter, and they are immutable. You
can assign each value only once.

Seven Languages in Seven Weeks

ATOMS, LISTS, AND TUPLES

Example (Atoms)
red.
%% red
Pill = blue.
%% blue
Pill.
%% blue

Example (Lists)
[1, 2, 3].
%% [1,2,3]
[1, 2, "three"].
%% [1,2,"three"]
List = [1, 2, 3].
%% [1,2,3]

Example (Tuples)
{one, two, three}.
%% {one,two,three}
Origin = {0, 0}.
%% {0,0}

Example (Tuples as hashes)
{comic_strip,
{name, "Calvin and Hobbes"},
{character, "Spaceman Spiff"}}.

Seven Languages in Seven Weeks

DATA STRUCTURES

ADDENDUM
Data Structures

Seven Languages in Seven Weeks

RECORDS AND MAPS

Records Provide structure and syntax around named tuples (tuples where the
first element is an atom describing the contents of the tuple, e.g.
{alias, "Thomas A. Anderson", "Neo"}).

Maps A new mapping type with its own syntax, added in Erlang/OTP 17.0.
Allows keys of any type.

Seven Languages in Seven Weeks

RECORD AND MAP EXAMPLES

Example (Record)
-record(comic_strip,

{name, character}).

Strip = #comic_strip{
name = "Calvin and Hobbes",
character = "Spaceman Spiff"}.

%% {comic_strip, "Calvin and Hobbes",
%% "Spaceman Spiff"}

Strip#comic_strip.name.
%% "Calvin and Hobbes"

Example (Map)
Strip = #{name => "Calvin and Hobbes",

character => "Spaceman Spiff"}.
%% #{name => "Calvin and Hobbes",
%% character => "Spaceman Spiff"}.

maps:get(name, Strip).
%% "Calvin and Hobbes"

Seven Languages in Seven Weeks

PROPERTY LISTS AND DICTIONARIES

Property Lists Ordinary lists containing entries in the form of either tuples, whose
first elements are keys used for lookup and insertion, or atoms, which
work as shorthand for tuples {Atom, true}.
Property lists are useful for representing inherited properties, such as
options passed to a function where a user may specify options
overriding the default settings, object properties, annotations, etc.

Dictionaries Implements a Key - Value dictionary. The representation of a
dictionary is not defined.

Seven Languages in Seven Weeks

PROPLIST AND DICT EXAMPLES

Example (Proplist)
Strip = [{name, "Calvin and Hobbes"},

{character, "Spaceman Spiff"}].
%% [{name, "Calvin and Hobbes"},
%% {character, "Spaceman Spiff"}]

proplists:get_value(name, Strip).
%% "Calvin and Hobbes"

Example (Dict)
Strip = dict:from_list(

[{name, "Calvin and Hobbes"},
{character, "Spaceman Spiff"}]).

%% ...

dict:fetch(name, Strip).
%% "Calvin and Hobbes"

Seven Languages in Seven Weeks

PATTERN MATCHING

Person = {person,
{name, "Agent Smith"},
{profession, "Killing Programs"}}.

{person, {name, Name}, {profession, Profession}} = Person.

Name.
%% "Agent Smith"

Profession.
%% "Killing Programs"

Erlang will match up the data structures, assigning variables to the values in the
tuples.

Seven Languages in Seven Weeks

PATTERN MATCHING (LISTS)

[Head | Tail] = [1, 2, 3].
%% Head = 1
%% Tail = [2,3]

[One, Two|Rest] = [1, 2, 3].
%% One = 1
%% Two = 2
%% Rest = [3]

[X|Rest] = [].
%% ** exception error: no match of right hand side value []

Seven Languages in Seven Weeks

BINARY PATTERN MATCHING

Example (Packing)
W = 1.
X = 2.
Y = 3.
Z = 4.
All = <<W:3, X: 3, Y:5, Z:5>>.
%% <<"(d">>

Example (Unpacking)
<<A:3, B:3, C:5, D:5>> = All.
%% A = 1
%% B = 2
%% C = 3
%% D = 4

Seven Languages in Seven Weeks

FUNCTIONS

-module(basic).
-export([mirror/1]).

mirror(Anything) -> Anything.

Listing 1: basic.erl

-module(matching_function).
-export([number/1]).

number(one) -> 1;
number(two) -> 2;
number(three) -> 3.

Listing 2: matching_function.erl

-module(yet_again).
-export([another_factorial/1,

another_fib/1]).

another_factorial(0) ->
1;

another_factorial(N) ->
N * another_factorial(N - 1).

another_fib(0) ->
1;

another_fib(1) ->
1;

another_fib(N) ->
another_fib(N - 1) + another_fib(N - 2).

Listing 3: yet_again.erl

Seven Languages in Seven Weeks

DAY 2: CHANGING FORMS

You’re going to learn to apply functions to lists that can quickly shape the
list into exactly what you need. Do you want to turn a shopping list into a
list of prices? What about turning a list of URLs into tuples containing
content and URLs? These are the problems that functional languages
simply devour.

Seven Languages in Seven Weeks

CONTROL STRUCTURES: CASE

Animal = "dog".
case Animal of

"dog" -> underdog;
"cat" -> thundercat

end.
%% underdog

case Animal of
"elephant" -> dumbo;
_ -> something_else

end.
%% something_else

Seven Languages in Seven Weeks

CONTROL STRUCTURES: IF

X = 0.

if
X > 0 -> positive;
X < 0 -> negative

end.
%% ** exception error: no true branch found when evaluating an if expression

if
X > 0 -> positive;
X < 0 -> negative;
true -> zero

end.
%% zero

Seven Languages in Seven Weeks

ANONYMOUS FUNCTIONS

Negate = fun(I) -> -I end.
%% #Fun<erl_eval.6.13229925>

Negate(1).
%% -1
Negate(-1).
%% 1

Seven Languages in Seven Weeks

LISTS AND HIGHER-ORDER FUNCTIONS

Numbers = [1, 2, 3, 4].
Print = fun(X) -> io:format("~p~n", [X]).

lists:foreach(Print, Numbers).
%% 1
%% 2
%% 3
%% 4
%% ok

lists:map(fun(X) -> X + 1 end, Numbers).
%% [2,3,4,5]

Small = fun(X) -> X < 3 end.
lists:filter(Small, Numbers).
%% [1,2]
lists:all(Small, [0, 1, 2]).
%% true
lists:all(Small, [0, 1, 2, 3]).
%% false

lists:any(Small, [0, 1, 2, 3]).
%% true
lists:any(Small, [3, 4, 5]).
%% false

lists:any(Small, []).
%% false
lists:all(Small, []).
%% true

lists:takewhile(Small, Numbers).
%% [1,2]
lists:dropwhile(Small, Numbers).
%% [3,4]
lists:takewhile(Small, [1, 2, 1, 4, 1]).
%% [1,2,1]
lists:dropwhile(Small, [1, 2, 1, 4, 1]).
%% [4,1]

Seven Languages in Seven Weeks

FOLDL

Numbers.
%% [1,2,3,4]

Adder = fun(ListItem, SumSoFar) -> ListItem + SumSoFar end.
InitialSum = 0.

lists:foldl(Adder, InitialSum, Numbers).
%% 10

Seven Languages in Seven Weeks

LIST CONSTRUCTION

double_all([]) -> [];
double_all([First|Rest]) -> [First + First|double_all(Rest)].

Example (Erlang)
[1 | [2, 3]].
%% [1,2,3]

[[2, 3] | 1].
%% [[2,3]|1]

[[] | [2, 3]].
%% [[],2,3]

[1 | []].
%% [1]

Example (Box-and-pointer Diagrams)

Seven Languages in Seven Weeks

LIST COMPREHENSIONS

List comprehensions provide a succinct syntax combining mapping, filtering, and
pattern matching.

Take the form [Expression || Clause1, Clause2, ..., ClauseN].
List comprehensions can have an arbitrary number of clauses.
The clauses can be generators or filters.

A filter can be a boolean expression or a function returning a boolean.
A generator, of the form Match <- List, matches a pattern on the left to the
elements on the right.

Seven Languages in Seven Weeks

LIST COMPREHENSION EXAMPLES

Fibs = [1, 1, 2, 3, 5].
Double = fun(X) -> X * 2 end.
[Double(X) || X <- Fibs].
%% [2,2,4,6,10]

Cart = [{pencil, 4, 0.25}, {pen, 1, 1.20}, {paper, 2, 0.20}].
WithTax = [{Product, Quantity, Price, Price * Quantity * 0.08} ||

{Product, Quantity, Price} <- Cart].
%% [{pencil,4,0.25,0.08},{pen,1,1.2,0.096},{paper,2,0.2,0.032}]
Cat = [{Product, Price} || {Product, _, Price} <- Cart].
%% [{pencil,0.25},{pen,1.2},{paper,0.2}]

[X || X <- [1, 2, 3, 4], X < 4, X > 1].
%% [2,3]

[{X, Y} || X <- [1, 2, 3, 4], X < 3, Y <- [5, 6]].
%% [{1,5},{1,6},{2,5},{2,6}]

Seven Languages in Seven Weeks

DAY 3: THE RED PILL

I didn’t say that it would be easy. I just said that it would be the truth.
You have to let it all go. Fear, doubt, and disbelief. Free your mind.

Seven Languages in Seven Weeks

BASIC CONCURRENCY PRIMITIVES

Spawning a process with spawn
Sending a message with !
Receiving a message with receive

-module(translate).
-export([loop/0]).

loop() ->
receive

"casa" ->
io:format("house~n"),
loop();

"blanca" ->
io:format("white~n"),
loop();

_ ->
io:format("I don't understand.~n"),
loop()

end.

Example (Usage)
Pid = spawn(fun translate:loop/0).
Pid ! "casa".
%% "house"
%% "casa"

Seven Languages in Seven Weeks

SYNCHRONOUS MESSAGING

-module(translate_service).
-export([loop/0, translate/2]).

loop() ->
receive

{From, "casa"} ->
From ! "house",
loop();

{From, "blanca"} ->
From ! "white",
loop();

{From, _} ->
From ! "I don't understand.",
loop()

end.

translate(To, Word) ->
To ! {self(), Word},
receive

Translation -> Translation
end.

Example (Usage)
Translator = spawn(fun translate_service:loop/0).
%% <0.38.0>>
translate_service:translate(Translator, "blanca").
%% "white"
translate_service:translate(Translator, "casa").
%% "house"

Seven Languages in Seven Weeks

LINKING A PROCESS FOR RELIABILITY

Example (Linking)

Example (Coroner)

Example (Doctor)

Seven Languages in Seven Weeks

DAY ∞: OTP

OTP
The Open Telecom Platform

Seven Languages in Seven Weeks

OTP

There’s way too much information to decode in the Matrix. You get used
to it, though. OTP does the translating. I don’t even see the code. All I
see is supervisor, gen_server, release…

Seven Languages in Seven Weeks

WRAPPING UP ERLANG/OTP: STRENGTHS

Reliable
Lightweight, share-nothing processes
OTP, the enterprise libraries
Let It Crash

Seven Languages in Seven Weeks

WRAPPING UP ERLANG/OTP: WEAKNESSES

Niche
Syntax
Integration

Seven Languages in Seven Weeks

FINAL THOUGHTS

Erlang does seem to be gathering momentum because it solves the right
problems in the right way at the right time.

Seven Languages in Seven Weeks

	Introduction
	Day 1
	Day 1 Interlude: Data Structures
	Day 1: Continued
	Day 2
	Day 3
	Day ∞
	Wrapping Up

