
Clojure

Extreme Tech Seminar

Seven Languages in Seven Weeks
Correl Roush

August 12, 2015



INTRODUCTION

Created 2007
Author Rich Hickey

A general-purpose, functional Lisp on the Java
Virtual Machine.

Seven Languages in Seven Weeks



GETTING CLOJURE

http://clojure.org

Seven Languages in Seven Weeks

http://clojure.org


DAY 1: TRAINING LUKE

Seven Languages in Seven Weeks



CALLING BASIC FUNCTIONS

(- 1)
;; -1
(* 10 10)
;; 100
(/ 2 4)
;; 1/2
(/ 2.0 4)
;; 0.5
(/ (/ 12 2) (/ 6 2))
;; 2
(/ 8 2 2)
;; 2
(< 1 2 3)
;; true

Seven Languages in Seven Weeks



TYPES

Strings & Characters
(println
"master yoda\nluke skywalker")

;; master yoda
;; luke skywalker
(str "yoda, " "luke, " "darth")
;; "yoda, luke, darth"
(str \f \o \r \c \e)
;; "force"

Booleans & Expressions
(= 1 1.0)
;; true
(= 1 2)
;; false
(if nil (println "true") (println "false"))
;; false
;; nil

Seven Languages in Seven Weeks



TYPES, CONTINUED

Lists & Vectors
(list 1 2 3)
;; (1 2 3)
(cons :battle-droid '(:r2d2 :c3po))
;; (:battle-droid :r2d2 :c3po)

([:hutt :wookie :ewok] 2)
;; :ewok
(concat [:darth-vader] [:darth-maul])
;; (:darth-vader :darth-maul)

Sets & Maps
(def spacecraft
#{:x-wing :y-wing :tie-fighter})

(spacecraft :x-wing)
;; :x-wing
(spacecraft :a-wing)
;; nil

(def mentors {:darth-vader "obi wan", :luke "yoda"})
(mentors :luke)
;; "yoda"

Seven Languages in Seven Weeks



DEFINING FUNCTIONS

(defn force-it
"The first function a young Jedi needs"
[jedi]
(str "Use the force, " jedi))

(force-it "Luke")
;; "Use the force, Luke"

(doc force-it)
;; -------------------------
;; user/force-it
;; ([jedi])
;; The first function a young Jedi needs

Seven Languages in Seven Weeks



BINDINGS

(def board [[:x :o :x] [:o :x :o] [:o :x :o]])
(defn center [[_ [_ c _] _]] c)
(center board)
;; :x

(defn center [board]
(let [[_ [_ c]] board] c))

(def villains [{:name "Godzilla" :size "big"} {:name "Ebola" :size "small"}])
(let [[_ {name :name}] villains] (str "Name of the second villain: " name))
;; "Name of the second villain: Ebola" 

Seven Languages in Seven Weeks



ANONYMOUS FUNCTIONS

Anonymous functions can be defined with the (fn [args] ...) form, or the
shorthand #(... % ...), where each % is replaced with one the provided
arguments.

(def people ["Lea", "Han Solo"])

(map (fn [w] (* 2 (count w))) people)
;; (6 16)

(map #(* 2 (count %)) people)
;; (6 16)

Apply and Filter
(def v [3 1 2])

(apply + v)
;; 6
(apply max v)
;; 3

(filter odd? v)
;; (3 1)
(filter #(< % 3) v)
;; (1 2)

Seven Languages in Seven Weeks



INTERVIEW WITH RICH HICKEY

Clojure is designed to be a practical tool for general-purpose production
programming by developers in industry and as such adds these additional
objectives to the Lisps of old. We work better in teams, we play well with
other languages, and we solve some traditional Lisp problems.

Seven Languages in Seven Weeks



DAY 2: YODA AND THE FORCE

Seven Languages in Seven Weeks



RECURSION

Simple Recursion
(defn size [v]

(if (empty? v)
0
(inc (size (rest v)))))

(size [1 2 3])
;; 3

Using Loop & Recur
(loop [x x-initial-value,

y y-initial-value]
(do-something-with x y))

(loop [x 1] x)
;; 1

(defn size [v]
(loop [l v, c 0]

(if (empty? l)
c
(recur (rest l) (inc c)))))

Seven Languages in Seven Weeks



SEQUENCES

A sequence is an implementation-independent abstraction around all the
various containers in the Clojure ecosystem. Sequences wrap all Clojure
collections (sets, maps, vectors, and the like), strings, and even file system
structures (streams, directories). They also provide a common abstraction
for Java containers, including Java collections, arrays, and strings. In
general, if it supports the functions first, rest, and cons, you can wrap
it in a sequence.

Seven Languages in Seven Weeks



LIST COMPREHENSIONS

(def colors ["red" "blue"])
(def toys ["block" "car"])

(for [x colors] (str "I like " x))
;; ("I like red" "I like blue")

(for [x colors, y toys] (str "I like " x " " y "s"))
;; ("I like red blocks" "I like red cars"
;; "I like blue blocks" "I like blue cars")

(defn small-word? [w] (< (count w) 4))
(for [x colors, y toys, :when (small-word? y)]

(str "I like " x " " y "s"))
;; ("I like red cars" "I like blue cars")

Seven Languages in Seven Weeks



LAZY EVALUATION

Clojure’s sequence library computes values only when they are actually
consumed.

Seven Languages in Seven Weeks



FINITE SEQUENCES WITH RANGE

(range 1 10)
;; (1 2 3 4 5 6 7 8 9)
(range 1 10 3)
;; (1 4 7)
(range 10)
;; (0 1 2 3 4 5 6 7 8 9)

Seven Languages in Seven Weeks



INFINITE SEQUENCES AND TAKE

(take 3 (repeat "Use the Force, Luke"))
;; ("Use the Force, Luke" "Use the Force, Luke" "Use the Force, Luke")
(take 5 (cycle [:lather :rinse :repeat]))
;; (:lather :rinse :repeat :lather :rinse)

(->> [:lather :rinse :repeat] (cycle) (drop 2) (take 5))
;; (:repeat :lather :rinse :repeat :lather)

(defn factorial [n] (apply * (take n (iterate inc 1))))
(factorial 5)
;; 120

Seven Languages in Seven Weeks



DEFRECORD AND PROTOCOLS

Protocols define a contract, similar to a Java interface. Types of a protocol will
support a specific set of functions, fields, and arguments.

Records define an type, similar to a Java class, that can implement a protocol.

Seven Languages in Seven Weeks



PROTOCOL EXAMPLE

(defprotocol Compass
(direction [c])
(left [c])
(right [c]))

(def directions [:north :east :south :west])

(defn turn
[base amount]
(rem (+ base amount) (count directions)))

(defrecord SimpleCompass [bearing]
Compass
(direction [_] (directions bearing))
(left [_] (SimpleCompass. (turn bearing 3)))
(right [_] (SimpleCompass. (turn bearing 1)))
Object
(toString [this] (str "[" (direction this) "]")))

Seven Languages in Seven Weeks



MACROS

Defining unless as a function
(defn unless [test body]

(if (not test) body))

(unless true (println "Danger, danger Will Robinson"))
;; Danger, danger Will Robinson
;; nil

Defining unless as a macro
(defmacro unless [test body]

(list 'if (list 'not test) 'body))

(macroexpand '(unless condition body))
;; (if (not condition) body)

(unless true (println "No more danger, Will."))
;; nil

Seven Languages in Seven Weeks



DAY 3: AN EYE FOR EVIL

Seven Languages in Seven Weeks



LOCKS & TRANSACTIONS

Modern databases use at least two types of concurrency control:
Locks prevent two competing transactions from accessing the same

row at the same time.
Versioning uses multiple versions to allow each transaction to have a

private copy of its data. If any transaction interferes with
another, the database engine simply reruns that transaction.

Seven Languages in Seven Weeks



LOCKING VS. STM

Languages like Java use locking to protect the resources of one thread from
competing threads that might corrupt them. Locking basically puts the burden
of concurrency control on the programmer. We are rapidly learning that this
burden is too much to bear.
Languages like Clojure use software transactional memory (STM). This strategy
uses multiple versions to maintain consistency and integrity.

Seven Languages in Seven Weeks



REFERENCES

01 A ref (reference) is a wrapped piece of data.
02 All access must conform to specified rules to support STM.
03 You cannot change a reference outside of a transaction.

Seven Languages in Seven Weeks



WORKING WITH REFERENCES

(def movie (ref "Star Wars"))

(deref movie)
;; "Star Wars"
@movie
;; "Star Wars"

(alter movie str ": The Empire Strikes Back")
;; java.lang.IllegalStateException: No transaction running (NO_SOURCE_FILE:0)

(dosync (alter movie str ": The Empire Strikes Back"))
;; "Star Wars: The Empire Strikes Back"

(dosync (ref-set movie "Star Wars: The Revenge of the Sith"))
;; "Star Wars: The Revenge of the Sith"

@movie
;; "Star Wars: The Revenge of the Sith"

Seven Languages in Seven Weeks



ATOMS

01 An atom is a wrapped piece of data.
02 Allows change outside the context of a transaction.
03 Useful to provide thread-safety for a single reference.

Seven Languages in Seven Weeks



WORKING WITH ATOMS

(def danger (atom "Split at your own risk."))

@danger
;; "Split at your own risk."

(reset! danger "Split with impunity")
;; "Split with impunity"

@danger
;; "Split with impunity"

(def top-sellers (atom []))
(swap! top-sellers conj {:title "Seven Languages", :author "Tate"})
;; [{:title "Seven Languages", :author "Tate"}]
(swap! top-sellers conj {:title "Programming Clojure", :author "Halloway"})
;; [{:title "Seven Languages", :author "Tate"}
;; {:title "Programming Clojure", :author "Halloway"}]

Seven Languages in Seven Weeks



BUILDING AN ATOM CACHE

(ns solutions.atom-cache
(:refer-clojure :exclude [get]))

(defn create
[]
(atom {}))

(defn get
[cache key]
(@cache key))

(defn put
([cache value-map]

(swap! cache merge value-map))
([cache key value]

(swap! cache assoc key value)))
(def ac (create))
(put ac :quote "I'm your father, Luke.")
(println (str "Cached item: " (get ac :quote)))

Seven Languages in Seven Weeks



AGENTS

01 Like an atom, an agent is a wrapped piece of data.
02 Like a future, the state of a dereferenced agent will block until a value is

available.
03 Users can mutate the data asynchronously using functions, and the updates will

occur in another thread.
04 Only one function can mutate the state of an agent at a time.

Seven Languages in Seven Weeks



WORKING WITH AGENTS

(def tribbles (agent 1))

(defn twice [x] (* 2 x))
(send tribbles twice)
@tribbles
;; 2

(defn slow-twice [x]
(do
(Thread/sleep 5000)
(* 2 x)))

(send tribbles slow-twice)
@tribbles
;; 2

;; -*- 5 seconds later -*-
@tribbles
;; 4

You will get a value of tribbles. You may not get
the latest changes from your own thread.
If you want to be sure to get the latest value with
respect to your own thread, you can call (await
tribbles) or (await-for timeout tribbles).

Clojure’s tools involve working with a snapshot whose
value is instantaneous and potentially out-of-date
immediately. That’s exactly how versioning databases work
for fast concurrency control.

Seven Languages in Seven Weeks



FUTURES

A future is a concurrency construct that allows an asynchronous return before
computation is complete.
Creating a future returns a reference immediately, starting the computation in
another thread. Dereferencing the reference blocks until the computation completes.
(def finer-things (future (Thread/sleep 5000) "take time"))

@finer-things
;; -*- After 5 seconds -*-
;; "take time"

Seven Languages in Seven Weeks



OTHER FEATURES

01 Metadata
02 Java Integration
03 Multimethods
04 Thread State

Seven Languages in Seven Weeks



WRAPPING UP

Clojure combines the power of a Lisp dialect with the convenience of the
JVM. From the JVM, Clojure benefits from the existing community,
deployment platform, and code libraries. As a Lisp dialect, Clojure comes
with the corresponding strengths and limitations.

Seven Languages in Seven Weeks



WRAPPING UP: STRENGTHS

01 A Good Lisp
02 Concurrency
03 Java Integration
04 Lazy Evaluation
05 Data as Code

Seven Languages in Seven Weeks



WRAPPING UP: WEAKNESSES

01 Prefix Notation
02 Readability
03 Learning Curve
04 Limited Lisp
05 Accessibility

Seven Languages in Seven Weeks



FINAL THOUGHTS

Most of Clojure’s strengths and weaknesses are related to the power and
flexibility.
If you need an extreme programming model and are willing to pay the price
of learning the language, Clojure is a great fit. I think this is a great
language for disciplined, educated teams looking for leverage. You can
build better software faster with Clojure.

Seven Languages in Seven Weeks


	Introduction
	Day 1
	Day 2
	Day 3
	Wrapping Up

